Antipodal covers of strongly regular graphs

نویسنده

  • Aleksandar Jurisic
چکیده

Antipodal covers of strongly regular graphs which are not necessarily distance-regular are studied. The structure of short cycles in an antipodal cover is considered. In most cases, this provides a tool to determine if a strongly regular graph has an antipodal cover. In these cases, covers cannot be distance-regular except when they cover a complete bipartite graph. A relationship between antipodal covers of a graph and its line graph is investigated. Finally, antipodal covers of complete bipartite graphs and their line graphs are characterized in terms of weak resolv-able transversal designs which are, in the case of maximal covering index, equivalent to affine planes with a parallel class deleted. This generalizes Drake's and Gardiner's characterization of distance-regular antipodal covers of complete bipartite graphs. Bipartite antipodal distance-regular graphs with odd diameter are characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance regular covers of the complete graph

Distance regular graphs fall into three families: primitive, antipodal, and bipar-tite. Each antipodal distance regular graph is a covering graph of a smaller (usually primitive) distance regular graph; the antipodal distance graphs of diameter three are covers of the complete graph, and are the first non-trivial case. Many of the known examples are connected with geometric objects, such as pro...

متن کامل

Tremain equiangular tight frames

We combine Steiner systems with Hadamard matrices to produce a new class of equiangular tight frames. This in turn leads to new constructions of strongly regular graphs and distance-regular antipodal covers of the complete graph.

متن کامل

Krein covers of complete graphs

Let G be an antipodal distance regular cover of a complete graph with index T'. If T' = 2 then it is known that the neighbourhood of a vertex in G is strongly regular, and the Krein bound is tight for G. We use the theory of spherical designs ( due to Delsarte, Goethals and Seidel) to show that if r > 2 and the Krein bound is tight for G then the neighbourhood of any vertex in G is strongly reg...

متن کامل

The spectral excess theorem for distance-regular graphs having distance-d graph with fewer distinct eigenvalues

Let Γ be a distance-regular graph with diameter d and Kneser graph K = Γd, the distance-d graph of Γ. We say that Γ is partially antipodal when K has fewer distinct eigenvalues than Γ. In particular, this is the case of antipodal distance-regular graphs (K with only two distinct eigenvalues), and the so-called half-antipodal distance-regular graphs (K with only one negative eigenvalue). We prov...

متن کامل

Valency of Distance-regular Antipodal Graphs with Diameter 4

Let G be a non-bipartite strongly regular graph on n vertices of valency k. We prove that if G has a distance-regular antipodal cover of diameter 4, then k ≤ 2(n + 1)/5 , unless G is the complement of triangular graph T (7), the folded Johnson graph J (8, 4) or the folded halved 8-cube. However, for these three graphs the bound k ≤ (n − 1)/2 holds. This result implies that only one of a complem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 182  شماره 

صفحات  -

تاریخ انتشار 1998